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A B S T R A C T

I,ack of verifiable ground truth is a common prob-
lem in remote sensing image analysis. For example,
consider the synthetic aperture radar (SAR)  image
data of Venus obtained by the Magellan  spacecraft,
Planetary scientists are interested in automatically
cataloging the locations of all the small volcanoes
in this data set; however, the problem is very diffi-
cult and cannot be performed with }wrfect reliabil-
ity even by human experts. Thus, training and eval-
uating the performance of an automatic algorithm
on this data set must be handled carefully. We
discuss the use of weighted free-response receiver-
operating characteristics (wFROCS)  for evaluating
detection performance when the “ground truth” is
subjective. in particular, we evaluate the relative
detection performance of humans and automatic al-
gorithms. Our experimental results indicate that
proper assessment of the uncertainty in “ground
truth” is essential in applications of this nature.

1 .  I N T R O D U C T I O N

Very large image databases are becoming more preva-
lent in a variety of scientific, medical, and engineer-
ing disciplines. In planetary science and astronomy,
hardware advances in recent years have led to in-
creases of several orders of magnitude in the vol-
ume of data returned per instrument or per space-
craft. In particular, the Magellan spacecraft which
recently surveyed the planet Venus returned more
data to Earth than all previous inter-planetary mis-
sions combined.

In planetary science, image analysis has t radi-
tionally been, and often still is, a strictly manual
process. For example, feature catalogs are typically
constructed by careful visual inspection, i dent ifica-
tion, and measurement of geolog;c features in a set
of hardcopy photographs. However, due to the in-
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creased size of image databases currently being CO1-
lccied,  simple ma~lual cataloging is 1)0 longer a prac-
tical option -- especially if any significant fraction
of the total available data is to be utilized.

We have lxxn  involved in the devclopmcmt  and
deployment of tools for the automated analysis of
large astronomy and planetary image databases [I].
This paper focuses on the image data set obtained
by the Magcllan  spacecraft at Venus. We are ul-
timately targeting the development of a t rainablc
image analysis system  with built-in learning com-
ponents.  A scientist trains  the system to find ob-
jects of interest by sinlply giving it examples of the
target objects. II] addition to automating laborious
and visually-intensive tasks, such a system provides
an objective, and repeatable process, thereby en-
abling the scientists to base their analyses on uni-
formly consistent data, with subjective variations
minimized.

This paper focuses in particular on issues that
arise when the training data cannot be considered
‘(ground truth” in the usual sense, i.e., when objects
are located by the scientists subjectively. This effec-
tively  introduces noise into the training and evahl-
atron of the detection system. Also, it naturally
raises the questions of how accurate any one human
detector may be, how humans compare with each
other, and how well an algorithm may be expected
to perform relative to human performance.

Previous work has dealt with some of t}le gen-
eral theoretical aspects of “noisy- class labels for
supervised pattern recognition [2, 3]. In addition,
there has been considerable work in the statistical
literature on the topic of combining multiple sub-
jective estimates [4, 5]. The originality of the work
described in this paper lies in hatldling t}]e ground
truth ambiguity problem in the context of a large-
scale, real-world, image analysis problem. Subjec-
tive evaluations are commonly used in a variety of



o-ther  image  analysis applications (in remote  scnls-
, ing and mcclical diagnosis) where vc]ifiablc  ground

truth is impractical to obtain duc to the associated
iosts or risks.

2 .  A U T O M A T E D  VOI,CANO
CATAI,OGING  IN SAR IMAGES

Tllc Magcllan  spacecraft transmitted back to earth
a data set consisting of over 30,000 high resolution
synthetic apcrt,urc  radar (SAR) images of the Venu-
sian surface. It was ncccssary  to usc radar in or-
der to pcnctratc the opaclue  cloud cover surroundi-
ng Venus. The primary radar imaging parameters
were as follows: the S.AR frequency was 2.385 G llz,
the full-resolution pixel-spacing was 75111,  the radar
incidence ang]e  ranged from 15 dcg to 45 dcg, and
the nntnbcr  of “radar looks” varied from 5 to 16 [6].
Each radar image is 1024 pixels square. The data
is publically  available at minimal cost from NASA
as a set of about 100 CD-ROMS [7].

This is by far the most detailed data set ever
assembled for any of the planets. The data repre-
sents  a treasure-trove of potential scientific infornla-
tion for planetary scientists. l’hc  study of volcanic
processes is essential to an undcrstandin.g  of the geo-
logic evolution of Venus. Central to volcanic studies
is cataloging the location, size, and characteristics
of each volcano. However, there arc estimated to
bc on the order of 106 visible volcanoes scattered
throughout the 30,000 Mage]lan images [8]. Man-
ually locating all of these volcanoes would require
on the order of 10 man-years of a planetary geol-
ogist’s time, notwithstanding the disadvantages of
deriving a catalog in this manner (subjective birxs,
non-repeatable).

We have previously presented empirical detec-
tion  performance results for an automatic algorithm
based  on spatial eigenreprescntations  and supervised
classification [9]. The algorithm’s performance was
shown to bc comparable to that of planetary scien-
tists. l’hc pattern recognition systcm  which forms
the basis  of these results uses a matched filter (for
cxatnplc,  the mean of locally windowed training ex-
amples  of volcanoes) to initially focus attention on
local regions of intcrc.st.  The dctcctcd local regions
arc then projected into a subspace  consisting of sig-
nificant principal directions of the training data.
This subspace  is determined by selecting the most
significant components produced by a singular value
decomposi t ion (SVD) of the training data. The
SW)  approach has  been used c]sewhcre  for recogni-
tion problems [1 O] and has some well-known weak-
nesses, such as sensitivity to scale and translation.

For the volcano a~)plication,  there is relatively little
scale ancl rotation variation. q’llc focus of at tcntioll
(FOA) stcl) is quite cffcctivc at accurately locating
tl]c ccntcrs  of the volcanoes, thus minimizing any
translation effects. Tllc significant SVD responses
a r c  fcd to a clwsificr  trainccl to discrilninatc bc-
twccn volcano and non-volcano local regions result-
ing from the FO.4 stage. Classification in tile pro-
jcctcd  subspace  using a simple ll~axil~l~ltll-likclil]ood
Gaussian classifier ,with full covariancc  matrices has
Lccn found to perform as well as alternative no] L-
paramctric methods such as neural networks aud
decision trees [9].

The systcm  is trained as follows. First, a FOA
filter is constructed from the set of all training vol-
canoes (winclo~iwd  to a fixed size, say 30 x 30 pix-
CIS). Second, the SVD basis is determined from the
same set of training volcanoes. Finally, a filtered
and projcctcd  set of “candidat,c” local regions are

,Xscperatcd  into “vcdcano” ancl “non-volcano” regiol Is ---

by matching thcm with a reference list of volcanoes.
Each step relics on the availability of a set of images
within which the volcanoes have been  labclled.  “La-
hclling” consists of having a scientist examine. au
image and produce a list of x,y coordinates describ-
ing where the volcanoes exist in the image (if any).
An interactive graphical interface has been devel-
oped to assist in this process, allowing the scientist
to simply point and click on targets in training inl-
agcs.

3 .  A M B I G U I T Y  I N  V O L C A N O
D E T E C T I O N

3.1, Volcano Identification is Subjective

Figure 1 shows a typical sub-image from the Mag-
cllau set with a number  of small Trolcanocs present.
The radar illumination is from the left, and t}ms the
lar~er  volcanoes display a readily-visible character-
istic appearance: a bright upward-sloping left flank
and a dark downward sloping right  flank. Many vol-
canoes also have a “dark-bright’) pattern at the cen-
ter caused by the presence of a summit pit. These
visual CLICS arc the primary ones used by the plane-
tary scientists to locate volcanoes. Some vo]cauoes
do not have the characteristic appearance, but in-
stead  can bc identified based on local changes in
texture, radial flow patterns, or disruption of sur-
rounding linear features.

Identifying volcanoes in the Magellan  images is
non-trivial for a mmbcr of rc~sons. !t’hc volca-
noes themselves exhibit  considerable variety, both
in terms of underlying topography and shape, and
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l“igure 1: Magcllan  SAR sub-image: A 30km2 area
containing a number of small volcanc)cs,  left  illunli-
nation, inc. angle  w 40°.

in the manner in which they respond to the, radar
illumination. ]n addition, the volcanoes appear in
a variety of geologic contexts, often with visually
confounding backgrounds, e.g., volcanoes can occur
superposed on other geologic features such as dense
collections of ridges,

l’hc  relatively low signal-to-noise ratio of the
volcanoes over the background can cause consider-
able labelling  variability even when experienced sci-
entists label the same image. For example, we have
found with our standard training set  of 4 images
that typically, for any pair of scientists, about 70-
80’%0  of these identifications will bc common to both
scientists, and 30-40% will be unique to each, ‘1’bus,
if onc scientist were artN,rarily  designated “ground
truth”, the the other scientist would typically have
a 70-80% detection rate and a 30-40% false alarm
rate,

3.2. The Use of Rating Categories

In order to better model the subjective uncertainty
present in the labelling  process, the labeler not only
identifies the location of each volcano, but also pro-
vides a subjective assessment of his certainty that a
volcano exists at that location. It is well known that,
direct elicitation of subjective probabilities from hu-
mans is quite difficult and prone to various calibra-
tion errors and biases [11]. A more effective ap-
proach  in practice is to have the scientists label
training examples into quantized probability bins,
where the probability lins correspond to visually

distinguishab]c  sub-c.atcgorics of volcanoes. In par-
ticular, wc have usecl five categories: (i) volcanoes
having clearly visible summit pits, bright-dark radar
pair, and apparent topographic S1OPC , probability
0,98, (ii) only 2 of the 3 criteria in the first cate-
gory are visible, probability 0.80, (iii) no summit
pit visible, however, there is evidence of flauks or
circular outline, probability 0.60, (iv) only a sunl-
mit pit visible, ]Jrobability  0.50, (v) no volcaxlo-like
features visible, probability  0.0. ‘l%c probabi]itics
correspond to the mean probability that an object is
indeed a volcano given that it has reccivcd a partic-
ular category label. ‘1’hme mean values were elicited
after considcraMc  discussions with the participating
l)lanctary  geologists concerning their validity and
interpretation. WC refer to labels categorized in this
manner as “catcgorizcd  probability labels.”

Figure 2 shows some typical volcanoes from each
category. \\’llilc  this simple quantized method may
not fully capture the uncertainty of the labcllcr  it
is certainly a much more useful approach than forc-
ing tllc labellcr  to make a binary class decision (as
wc shall scc later). ‘J’hc use of quantized probabil-
ity bins to attach lcwcls of certainty to subjcctivo
image labc]ling  is not new: the same approach is
routinely used in the evaluation of radiographic in~-
age displays to generate subjective receiver operat-
ing characteristics (ROCk) [12]. However, in this
paper wc extend the lmic approach by defining the
notion of weighted ROCS (Section 4).

4. PERFORMAA’CE EVALUATIOA T

M E T H O D O L O G I E S

4.1. The Free-Response ROC Method

Standard ROC methodology plots the probability
of detection as a function of the probability of false
alarm --- the ROC is an implicit function of a thresh-
olc~ which can be applied to the the decision-making
systcm’s output, For the problem of object detec-
tion in images, the probability of false alarms is
not well defined; instead, probability of detection
is plotted as a function of the false alarm rate rel-
ative  to the total cxstimated  number of vo]canocs:
this results in a slightly modified ROC nlcthodol-
ogy, equivalent to the free-response ROC (FROC)
[13, 14].

Since we do not have a refcrencc ground truth
list for the volcano detection problcm,  how should
clctcction performance bc measured? Onc approach
is to USC consensus-based estimates as the rcfcrencc
ground-trut.]1,  i.e., have a consensus of scientists la-
bel the images, treat these as ground truth, and
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Figure  2: A small selection of volcanoes from four
catc.gorics as labeled by the geologists.

evaluate the FROC performance of the othcx scien-
tists relative to this consensus “truth .“ ‘1’hc use of
categorized probability labels with k bins allows the
definition of k points on an FROC curve: the first
point comes from the detection/false-alarn~ perfor-
mance resulting from only using category 1‘s as vol-
canoes, while treating all other categories as false
alarms; the second point admits only category 1 and
2 volcanoes; and so on.

Figure 3 shows such an FROC plot baswd on 4
test images containing an estimated 150 volcanoes.
Four individual scientists were compared with the
consensus generated by two of them (A and B). Al-
though the consensus labclling  was generated some
time  after the individual labelling,  there is undoubt-
edly artifactual correlation between the labcllings  of
A and II and their consensus. The performance of
the detection algorithm described in Section 2 is
also shown. Here, the FROC curve is the cumu-
lative performance when the algorithm was trained
in cross-validation mode on each set of 3 images
and evaluated on tlic fourth. Note that the algo-
rithm appears comparable with the performance of
the scientists at the lower detection/false-alarnl rate
regions, but is lCSS competitive at the higher end.

4,2. ‘1’hc Weighted FROC Method

As dcscribcd  above, the standard FROC approach
assumes that ground truth is known. However, rathcn
than using the consensus list as absolute ground
truth, one can instead treat the consensus list prob
abilistically.  In this case, each local region in the
consensus is considered to bc a detection with pro~
ability p and a false alarm with probability 1 – p.
where the probability p is determined by the cat-

h’igurc  3: F1{OC Plot Showing Individual Scientists
Vs. Consensus IJabclling

egory label  (confidence) that was given to the re-
gion by the consensus labcllcrs. This results in a
weighted FROC (wFROC)  measure of performance.
‘1’hc overall effect is to drag the standard FROC
(where no allowance is made for the probabilistic
effect) towards the “center” of the plot, away from
the icleal “false alarm rate 0.0, dc:tection rate 1.0”
operating point. Fur~hernlore,  the ideal “perfect”
operating point is no longer achievable by any sys-
tem, since the reference data is itself probabilistic.
Hence, an eflcctive  optimal wFROC  is defined by
exactly matching the probabilistic predictions of the
reference list — one can do no better.

Figure 4 shows the same data as plotted in Fig-
ure 3 but now evaluated as a wFROC  instead of an
FROC.  We note two primary effects relative to tllc
standard FROC:
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For any fixed false alarm rate, the detection
rates are now less optimistic than with the
FROC, for both humans and algorithm.

l’hc  algorithm’s curve has separated from the
humans in the wFROC.  The SVD algorithm
appears to be doing poorly in terms of approx-
imating posterior probabilities and wFROC  is
more sensitive to this than the FROC.  This
poor performance appears to be due to the
fact that the subspace  projection destroys the
implicit probabilistic information present in
the categories. Category 1 ‘s, 2’s, etc. are jum-
bled up in the projected space withollt any
obvious structure.

DISCUSSION AND CONCLUSION

The wFROC  method is a useful step in the direc-
tion of quantifying subjective uncertain y in labcllcd
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Figure  4: FROC Plot Showing Individual Scientists
VS. Consensus Labclling

training data for image analysis. Currcnt]y  we are
investigating statistical estimation techniques which
combine individual labcllings  into a composite prob-
ability estimate for each local region [15, 16]. In this
manner a given labcller  can be compared with the
mathematical consensus of all the’ other labcllcrs.
The quantitative details differ from the simpler method
prcscntcd  above, but the qualitative results are the
same: (a) ignoring label uncertainty can lead to
over-optimistic estimates of troth human and algo-
rithmic performance, and (b) proper treatment of
label trnccrtainty  can reveal differences between hu-
man and algorithmic performance which may be
hidden by simpler methods.

l’hc proposed wFROC  technique provides a fran~c-
work for more accurate estimation and evaluation
of basic image quantities of interest for applications
where absolute ground truth is not available. Such
applications are becoming increasingly common EM
remote-sensing platforms provide orders of n~agni-
tudc more data and well-calibrated ground truth
constitutes a tiny (and perhaps even zero) fraction
of the overall data set.
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